


AD-A177 093

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

	REPORT DOCUM	NTATION PAGE	<u> </u>		
1a REPORT SECURITY CLASSIFICATION		1b. RESTRICTIVE MARKINGS			
UNCLASSIFIED					
2a SECURITY CLASSIFICATION AUTHORITY NA 2b. DECLASSIFICATION/DOWNGRADING SCHEDULE		3. DISTRIBUTION/AVAILABILITY OF REPORT Approved for Public Release; Distribution Unlimited			
4. PERFORMING ORGANIZATION REPORT NUM	BER(S)	S. MONITORING OR	GANIZATION RE	PORT NUMBERIS	1
Technical Report No. 154		AFOSR-TR- 87-0073			
& NAME OF PERFORMING ORGANIZATION	SE OFFICE SYMBOL	74 NAME OF MONIT	ORING ORGAN	ZATION	
University of North Carolina	(If applicable)	AFOSR/NM			
6c. ADDRESS (City, State and ZIP Code) Center for Stochastic Processe	e Statistics	76. ADDRESS (City,	State and ZIP Cod	4)	
Department, Phillips Hall 039-		Bldg. 410 Bolling AFB	מר אחממי	6440	
Chapel Hill, NC 27514	7,	BUTTING AFB	, 00 20332	-0448	
SA NAME OF FUNDING/SPONSORING	SO. OFFICE SYMBOL	e securement	METRIMENTIC	INTIBICATION	14859
GREANIZATION AFOSR	(If applicable)	PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER F49620 85 C 0144			
St. ADDRESS (City, State and ZIP Code)		10. SOURCE OF FUNDING NOS.			
Bldg. 410		PROGRAM	PROJECT	TASK	WORK UNIT
Bolling AFB, DC		ELEMENT NO.	NO.	NO.	NO.
		6.1102F	2304	A/5	
11. FITUE include Security Classification: On the validity of Beurling th	eorems in polyd	iscs		./3	
12. PERSONAL AUTHOR(S) Mandrekar, V.				-	
13a TYPE OF REPORT 13b TIME O	OVERED	14. DATE OF REPOR	AT (Yr., Mo., Day)	15. PAGE C	OUNT
technical preprint. FROM 8	/85 to <u>9/86</u> _	September	1986	4	
16. SUPPLEMENTARY NOTATION					
	1				
17 COSATI CODES 18 SUBJECT TERMS (on tinue on reverse if no		ly by block number	"
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX			一、从上		
AAAAAAAAAAAA	1				
Let I be the set of integ open unit disc and T the bound the respective calesian produc we denote by L ^P (T ² , o ₂) the nor functions.	ers. We denote ary of U in the t and of the normalized Lebesgue	by m,n etc. t	e f. Let X' gue measure e equivalen	of X2 Let , 2 , U2 and e on T . For ce class of	T be r p>0, p-integrabl
20. DISTRIBUTION/AVAILABILITY OF ASSTRA	CŦ .	21. ABSTRACT SEC		FEB 2	4 1987
UNCLASSIFIED/UNLIMITED W SAME AS APT.	UNCLASSIFIED				
224 NAME OF RESPONSIBLE INDIVIDUAL Paggy Pavitoh Mail Cr	owley	22b. TELEPHONE N (Include Area Co		AFOSR/NM	80L

AFOSR-TR- 87-0073

CENTER FOR STOCHASTIC PROCESSES

Department of Statistics University of North Carolina Chapel Hill, North Carolina

ON THE VALIDITY OF BEURLING THEOREMS IN POLYDISCS

bу

V. Mandrekar

Armonard for public to 3 (75)

Technical Report No. 154
September 1986

This technical Information Division

(AFS)

Chief, Technical Information Division

MATTHEM J. KERPER

Chief, Technical Information Division

ON THE VALIDITY OF BEURLING THEOREMS IN POLYDISCS

bу

V. Mandrekar*
Department of Statistics & Probability
Michigan State University
East Lansing, MI 48824

and

Center for Stochastic Processes
Department of Statistics
University of North Carolina
Chapel Hill, NC 27514

Acces	sion For	
NTIS	GRA&I	
DTIC	TAB	47
	ounced	ä
Justi	dication_	
Ву		
Distr	dution/	
Avati	At Oty 7	ใจกิยธ
	stee this	/6r
Dist	a partific t	
	-	
11		
		ļ

 $[\]star$ Supported in part by ONR N00014-85-K-0150 and the Air Force Office of Scientific Research Contract No. F49620 85 C 0144.

Let Z be the set of integers. We denote by m,n etc. the elements of Z. Let U be the open unit dis and T the boundary of U in the complex plane . Let \mathbf{z}^2 , \mathbf{c}^2 , \mathbf{U}^2 and \mathbf{T}^2 be the respective calesian product and σ_2 the normalized Lebesgue measure on T^2 . For p > 0, we denote by $L^p(T^2, \sigma_2)$ the usual Lebesgue space of the equivalence class of p-integrable functions and $\mathtt{H}^p(\mathtt{U}^2) = \{\mathtt{f} : \mathtt{f} : \mathtt{U}^2 \to \mathtt{c} \text{ analytic and } \mathtt{sub}_{0 \le \mathtt{r} \le 1} \int_{\mathtt{T}} \big| \mathtt{f}_{\mathtt{r}}(\underline{\mathtt{t}}) \big|^p \mathrm{d}\sigma_2 < \infty \}.$ Here $f_r(\underline{t}) = f(z)$ with $z = r\underline{t}$. Let $\underline{z} = (z_1, z_2) = (r_1 e^{i\theta}, r_2 e^{i\theta})$ and $\underline{t} = (e^{i\theta_1, i\theta_2})$, then $P(\underline{z},\underline{t}) = P_{r_1}(\theta_1 - \theta_1)$. $P_{r_2}(\theta_2 - \theta_2)$ is called Poisson Kernel with $P_r(\theta) = \frac{1-r^2}{1-2r\cos\theta+r^2}$. It is known that for $f \in H^p(U^2)$, $\lim_{r\to 1} f_r(\underline{t}) = f*(\underline{t})$ exists and is in $L^p(T^2, \sigma_2)$. For $f \in L^p(T^2, \sigma_2)$, let $f^e(z) = \int_{\pi^2} P(\underline{z}, \underline{t}) f(t) d\sigma_2$, then $f^e \in H^p(U^2)$. In case p = 2, $f \in H^2(U^2)$ if $f L^2(T^2, \sigma_2)$ and $f(\underline{t}) = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} a_m t_1^m t_2^n \text{ and } f^e = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} a_m z_1^m z_2^n. \text{ Conversely every } f \in H^2(U^2)$ has this form and $f^*(\underline{t}) = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} a_{mn} t_1^m t_2^n$. For further information, see [4]. In [4], Rudin gives an example of a shift-invariant subspace of $H^2(T^2)$ which is not of the form q.H2, where q is an inner function. Our purpose here is to characterize invariant subspaces of the form qH² in terms of the action of the shifts on it. We note that subspaces of the form qH2 can be represented

(1)
$$qH^2 = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \bullet v_1^m v_2^n(M)$$

where M equals the span of q in $H^2(T^2)$ and V_1 is the multiplication by t_1 on $H^2(T^2)$ with $\underline{t} = (t_1, t_2) \in T^2$. It is easy to check that $M = \{qH^2 \circ V_1(qH^2)\} \cap \{qH^2 \circ V_2(qH^2)\}$. As V_1 commutes with V_2 (in short, $V_1 \sim V_2$), we get from (1) and Theorem 4.1 of [2] (see also [5]) that V_1 and V_2 are doubly commuting (i.e. $V_1 \sim V_2$, $V_1 \sim V_2^*$). In fact, we have

2. Theorem. An invariant subspace $M \neq \{0\}$ of $H^2(T^2)$ is of the form $q \cdot H^2$ with q inner function if and only if V_1 and V_2 are doubly commuting on M.

<u>Proof</u>: Necessity was proved above. To prove the sufficiency we get, in view of Theorem 4.2 ((c) \Rightarrow (b)) [2],

(3)
$$M = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \Phi V_1^m V_2^n (R_1^{\perp} \cap R_2^{\perp}),$$

$$\int t_{1}^{m} t_{2}^{n} q_{1}^{-} q_{2}^{-} d\sigma_{2} = 0.$$

Since $q_1\overline{q}_2 \in L^1(T^2,\sigma_2)$ we get $q_1\overline{q}_2 = c_1$ a.e. σ_2 . In particular, $|q_1|^2 = c_2$. Hence $R_1^1 \cap R_2^1$ is one dimensional. Also q generating $R_1^1 \cap R_2^1$ is an innerfunction. Assume |q| = 1 a.e. choosing q of norm 1. Now (3) gives the result. Let $f \in H^2(T^2)$ and $M_f = \overline{sp}\{V_1^m V_2^n f : m, n \ge 0\}$ then M_f is an invariant subspace.

4. Corollary. $M_f = qH^2(T^2)$ if and only if V_1 and V_2 are doubly commuting on M_f .

Following Helson [1], we say that a function g is H-outer if $M_g = H^2(T^2)$.

5. Corollary. A function $f \in H^2(T^2)$ has the property $f = q \cdot g$ with q inner and g H-outer if and only if V_1 and V_2 doubly commute on M_f .

<u>Proof</u>: By Corollary 4, only if part follows as $M_f = qH^2(T^2)$. To prove the converse we note that by Corollary , $M_f = qH^2(T^2)$ giving $f = q \cdot g$, $g \in H^2(T^2)$. Hence $M_f = q \cdot M_g$ giving g is H-outer.

In ([4], p. 72) a function $f \in H^2(U^2)$ is called outer (we call it R-outer)

if $\log |f(z)| = \int_{\mathbb{T}^2} \log |f^*| d\sigma_2$. Given a function $f \in H^2(\mathbb{T}^2)$, we denote by $f^e \in H^2(\mathbb{U}^2)$ given by $\int_{\mathbb{T}^2} P(z,t) f(\underline{t}) d\sigma_2$. In this case we note that $(f^e)^* = f$.

It is already known ([4], Theorem 4.4.6) that f is H-outer then f^e is R-outer. From this we get in view of Corollary 4 the following.

6. Corollary. Let g be H-outer then g^e is R-outer and V_1 and V_2 doubly commute on M_g .

We now prove the converse of Corollary 6. Assume now that V_1, V_2 doubly commute on M_f and f^e is R-outer then by Corollaries 5 and 6, the definition of f^e, g^e and the fact that |q| = 1 we get $f^e = pg^e$ with |p| = 1. Thus we get that the slice function $f_W^e(\lambda) = p_W(\lambda)g_W^e(\lambda)$. Using Lemma 4.4.4(a) of [4] and the uniqueness of outer function ([1], p. 13) we get $p_W(\lambda) = 1$ for all w and w giving p = 1 i.e., f = g. Combining this with Corollary 6 gives

7. <u>Corollary</u>. Let $f \in H^2(T^2)$ then $M_f = H^2(T^2)$ if and only if f^e is R-outer and V_1 and V_2 doubly commute.

In view of Theorem 4.2 of [2], we get that Corollary 7 includes Beurling Theorem proved in ([6], Theorem 1.5). Now using essentially classified techniques ([3],[2]) one can derive associated results in prediction theory in [6].

References

- 1. Helson, H. (1964) Lectures on invariant subspaces, Academic Press, N.Y.
- Kallianpur, G. and Mandrekar, V. (1983) Non-deterministic random fields and Wold and Halmos decompositions for commuting isometries, Prediction Theory and Harmonic Analysis, (eds. Mandrekar, V. and Salehi, H.) North Holland, Amsterdam.
- Masani, P. (1962) Shift-invariant spaces and prediction theory 107, 275-290.
- 4. Rudin, W. (1979) Function Theory in Polydiscs, Benjamin, N.Y.

- 5. Slocinski, M. (1980) On Wold-type decomposition of a pair of commuting isometries, Ann. Pol. Math. 37, 255-262.
- 6. Soltani, A.R. (1984) Extrapolation and moving average representation for stationary random fields and Beurling's Theorem, Ann. Prob. 12, 120-132.

Constitution of the consti